Browse content
Table of contents
Actions for selected chapters
- Full text access
- Book chapterAbstract only
Chapter 1 - Introduction
Pages 1-21 - Book chapterAbstract only
Chapter 2 - Concept and fundamentals of biofilms
Pages 23-61 - Book chapterAbstract only
Chapter 3 - Kinetic models
Pages 63-89 - Book chapterAbstract only
Chapter 4 - Continuum models
Pages 91-118 - Book chapterAbstract only
Chapter 5 - Discrete models
Pages 119-152 - Book chapterAbstract only
Chapter 6 - Hybrid lattice Boltzmann continuum–discrete models
Pages 153-193 - Book chapterAbstract only
Chapter 7 - Bioreactor concepts, types, and modeling
Pages 195-245 - Book chapterNo access
Index
Pages 247-251
About the book
Description
Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models.
Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications.
Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models.
Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications.
Key Features
- Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM)
- Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs
- Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection
- Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing
- Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM)
- Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs
- Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection
- Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing
Details
ISBN
978-0-323-85690-4
Language
English
Published
2022
Copyright
Copyright © 2022 Elsevier Inc. All rights reserved.
Imprint
Academic Press